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THEORETICAL SOLUTIONS FOR LOW-PECLET-NUMBER
THERMAL-ENTRY-REGION HEAT TRANSFER IN
LAMINAR FLOW THROUGH CONCENTRIC ANNULI*
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Abstract—Exact temperature solutions and theoretical Nusselt curves, valid for Péclét numbers ranging
from 1 to oo, were obtained for thermal-entry-region heat transfer for laminar flow through concentric
annuli, subject to a step jump in wall heat flux at z = 0. To allow for the effect of axial conduction, which
is significant at low Péclét numbers, the inlet fluid temperature was taken to be uniform at z = — o0, and the
first twenty eigenconstants were computed for the adiabatic region (— oo < z < 0) and the heated region
(0 < z < o), separately. By constructing two sets of orthonormal functions from the non-orthogonal
eigenfunctions, the series expansion coefficients were then determined such that both the temperatures and
longitudinal temperature gradients for the two regions match at z = 0. The temperature solutions corres-
ponding to the limiting case of Np, = oo show excellent agreement with those reported by Lundberg et al.
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[4], who analyzed the entry-region problem by neglecting axial conduction.

NOMENCLATURE
series expansion coefficients in equation (16);
a constant;
a constant given by equation (10);
a constant given by equation (12);
series expansion coefficients in equation (17);
specific heat;
= 2(r, — r,), hydraulic diameter;
matrices;
= (6% — 1)/Ing;
= DyapC/k, Péclét number ;
local Nusselt number defined by equation (41), for the case where step jump
in heat flux occurs at the inner wall of an annulus;
local Nusselt number defined by equation (42) for the case where step jump
in heat flux occurs at the outer wall of an annulus;
eigenfunctions for equations (20) and (21);
R, (&) evaluated at £ = 1;
inlet fluid temperature ;
fluid temperature in the adiabatic region (i = 1), and in the heated region
(i=2);
fluid temperature in the fully developed region ;
bulk fluid temperature in the heated region;
wall temperature in the heated region;

* This work was performed under the auspices of the U.S. Atomic Energy Commission.
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Y. (&), eigenfunctions of equations (18) and (19);

ak, b, coefficients in equation (24);

kg, coefficients in equation (27);

G uniform heat flux at wall;

r, radial coordinate variable;

reta, the inner and outer radius respectively of an annulus;

u, average fluid velocity ;

z, axial coordinate variable;

[ eigenvalues of equations (18) and (19);

B eigenvalues of equations (20) and (21);

a4, Gramm determinant ;

dij, Kronecker delta;

1, = Z/DhNPe ,

[@.]; =[0,],— [0,];:

(63, = k{[T}}; — Ty}/q.,D,, dimensionless fluid temperature ;

(6.1, dimensionless bulk fluid temperature;

(6,1, dimensionless fluid temperature in the fully developed region;

10,1, dimensionless bulk fluid temperature in the fully developed region;

0, dimensionless fluid temperature at a location #;

9,,, dimensionless bulk fluid temperature at a location #;

(6.1, dimensionless wall temperature ;

£, = Firy;

0, density of fluid;

a, =rr;

¢(0), =1+0*—-K;

b orthonormal set of functions defined by equation (24);

W, a function defined by equation (3);

1/ orthonormal set of functions defined by equation (24).
INTRODUCTION

THE RELATIVE importance of axial conduction in heat transfer to a fluid flowing inside a channel
depends primarily on the magnitude of the Péclét number. For laminar flow through a circular pipe,
for instance, axial conduction is virtually negligible in comparison with radial conduction if Péclét
number, Np,, exceeds approximately 100. The classic Graetz problem deals with thermal-entry-region
heat transfer under sucha condition. For Np, < 100, however, axial conduction becomes increasingly
important as Np, is reduced. It ultimately attains an order of magnitude equal to that of radial
conduction as Np, approaches unity. For a thorough understanding of the heat transfer
characteristics, explicit temperature solutions, valid for such small Péclét numbers, are of great
theoretical value. Mathematically speaking, however, such solutions are much more difficult to
seek than those for the Graetz-type problem, because not only does the energy equation contain an
additional axial conduction term, but that the heat transfer needs to be considered in the infinite
region, —oc < z < oo, rather than the semi-infinite region, 0 € z < oc. The latter requirement
arises from the fact that the thermal effect of axial conduction, under ordinary circumstances.
penetrates into the region 0 > z, thus enlarging the domain of heat transfer. In practice, therefore,
it is no longer realistic to specify the inlet fluid temperature at z = 0. Instead, such a boundary
condition should be imposed at z = — .
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A mathematical scheme for solving this type of convection heat transfer problem in the infinite
region, —oo < z < oo, was recently devised by the present author [2]. The method consists
essentially of determining the eigenvalues and eigenfunctions for the regions z < 0 and z > 0,
separately, and then matching both the temperatures and longitudinal temperature gradients at
z = 0. To accomplish the matching process, two orthonormal sets of functions were constructed
from the nonorthogonal eigenfunctions by utilizing the Gramm-Schmidt orthonormalization
procedure [3], and the series expansion coefficients were then determined by solving a system of
simultaneous equations. For laminar flow inside a circular pipe with a step change in wall heat flux
at z = 0, the proposed scheme was shown [2] to yield Nusselt numbers that agree almost perfectly
with those reported recently by Hennecke [1], who solved the same set of partial differential
equations numerically using the finite-difference approach. It was also demonstrated that the
theoretical solution obtained by the proposed method, in fact, represents a more generalized
thermal-entry-region temperature solution, which reduces to that for the corresponding Graetz
problem as N, approaches inifinity.

The objective of the present study was to apply the same technique to analyze the corresponding
problem for laminar flow through concentric annuli, for which no solutions, numerical or
theoretical, have hitherto been reported in the literature. Theoretical solutions are presented in this
paper for unilateral heat transfer from either the inner or outer wall of an annulus subject to a step
change in wall heat flux at z = 0. The opposite wall, in either case, was considered thermally
adiabatic. Nusselt curves were obtained for Péclét numbers ranging from 1 to oo, for annuli having
the inner-to-outer radius ratio (r,/r,) of 01, 0-3, 0-5, 0-7 and 0-9. As will be shown later, the Nusselt
numbers corresponding to Np, = oc agree very well with those obtained by Lundberg et al. [4],
who analyzed the corresponding problem by assuming negligible axial conduction. From the
explicit temperature solutions, the local temperature profiles in both the adiabatic and heated
regions were also calculated and illustrated.

THEORETICAL ANALYSIS
A schematic diagram is shown in Fig. 1 for laminar incompressible flow through an annulus
having an adiabatic inner wall and an outer wall that is subjected to a step change in heat fluxatz = 0.
In the analysis that follows, the temperature solutions corresponding to this case will be discerned
by a subscript,j = 2. By interchanging the thermal boundary conditions at the inner and outer walls,
one obtains the diagram for the case in which the step change in heat flux is imposed at the inner

Uniform heat flux, g,
W q, g9,
Adiabatic wall ‘
; ! ' '
atz =-w, Fluid flow
Fluid Flow —=
temperature with velocity, w(r) &
=7 777 7 f
4
Adiabatic inner wolléﬂ
LL ya 4 4
Fluid flow
—_— - Flow —
with velocity, v (r)
Adiabatic wall ? ? ?
Z=0 q, q, g,

FiG. 1. Coordinate system for the annular channel.
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wall. The temperature solutions for this latter case will be denoted by a subscript, j = 1. In either
case, the inlet fluid temperature is uniform and equals T, at z = — oo. The energy equations, by
assuming constant fluid properties and negligible viscous dissipation, can then be written for
j=1lor2 as

2]
1 — (rfry)* + ("—) In (r/r3)
_ Ino ATl [o°[T);  1o[T); aﬁmﬂ.
2puC, = oz *k[ a tia ton |0=1D O
t+o __( Ino

where the subscript “i”” in [T;]; (i = 1 and i = 2) refers to the adiabatic region (— oo < z < 0)
and the heated region (0 < z < oo) respectively. The appropriate boundary conditions to be
satisfied are:

For the region — o0 <z €0, and forj=1or 2,

[T,
ﬂ[a‘]f =0 atr=r andr=r,. (2.2)
.

For the region 0 € z < oo, and forj = 1 or 2,

(L] =[T], asz-w (2.3)
[ T,];
—[arl]-’ = —0ifqu/k) atr=r (2.4)
a[%l" = 0,/qu/k) atr =r, (2.5)

where 8, (k = 1, 2)is the Kronecker delta, i.e.
5 lifk =j
MV 0ifk #
Atz=0,andforj=1or2,

(730 = [T, ADI0_dADI0 26)

For each value of j(i.e. j = 1 or 2), equation (1) represents a set of elliptic partial differential equations.
Their solutions satisfying the boundary conditions (2.1)+2.5) are to be matched at z = 0 such that
the two conditions given by equation (2.6) are both satisfied. To seek the mathematical solutions to
equations (1)2.6), it is advantageous to change the variables by letting [6,]; = k([ T]; — T5)/q..Ds
7 = z/D,Np,, &€ = r/ry, K = (62 — 1)/Inc and ¢(o) = | + o> — K. The above set of equations are
then transformed, for j = 1 or 2, to:

1-& +KinZo[o], o°[0]; + 10[6:]; + 1 O*[0:;

W) (1 —of on ~ & TE & TaH—opNE ap (-0D
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For the region —oo < < 0, and forj = 1 or 2,

[6,];=0 atp=-o .1y
m:O até =candé=1. 2.2y
o¢
For the region 0 < # < oo, and forj = 1 or 2,
[0:];=1[0,]; asn—- oo 2.3y
%062]_,- = —0,;/21 - 0) até=o¢ 2.4y
a_[(%li = 0,;/2(1 — o) até = 1. (2.5

Aty =0,andforj = 1or2,
on on

In equation (2.3),[0,];(j = 1 or 2) denotes the dimensionless, fully developed temperature solution
which includes the effect of upstream conduction. It can be derived in the following manner. To
seek the expression for [6,],, for example, a solution of the form:

[0,]; = Con + ¥(9) (3

is assumed on the fact that, in the thermally fully developed region, the temperature solution is a
linear function of . Substituting equation (3) into equations (1), (2.4)' and (2.5) then yields the
following ordinary differential equation and the boundary conditions.

[91]1(6) = [02]](5)’

2.6y

@y 1dy 1—& 4+ Kné

& T tae C°[2¢(a)(1—a)2] @
dys —1
(E=2(1—0') até=o¢ (5)
ay
5 =0 até = 1. (6)

Integrating equation (4) twice, applying the boundary conditions, and then combining the results
with equation (3) gives:

o (1 —K) 54 ¢2 ]
0], = — _ >
(6,1, <l+a> +¢(0)(1+0)(1—a)2[ ;¢ -d toy g Cl )
To evaluate the integration constant, C1, in equation (7), a heat balance over the region extending

from z = — o0 to an arbitrary position in the thermally fully developed region is taken. Denoting the
dimensionless bulk fluid temperature at the latter position by [8,],, one obtains:

4¢ a[e,]1 4 [ L] 8
[gf]l = 1 +o (1 — Uz)Npe_[é 1 g n + le’e . ( )
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Since the bulk fluid temperature at any axial position, #, is given by the general expression

1

Jé(l - &+ KIngo,d¢. 9)

a

4
b, = Plo) (1 — o?)

substitution of equation (7) into equation (9), followed by an integration and comparison with
equation (8), gives, after considerable algebraic manipulation, the following expression for C1.

- 25 11 11 49 11 3
ct id [<f—wK+~K2)+<— “K+—K2>02

T o)1+ o)l —o)F [\48 9 16 48 9 16
3125 1y , 7 ] 40 1
+<&§‘?§K"R>G+Z§“}+1‘l?zv7; {10

Combining equations (10) and (7) yields the expression for [6,];, which differs from that for the
case of no axial conduction in that it contains an additional term, 46/(1 + ¢) N3, By proceeding
in the same manner, [0,], can be found to be:

4 1 1-K\,, &  K&hné o , ]
[Of]2—1+a+ [(T)é i 2777———5(0 - K)In&| + C2 (11)
where
-1 7 25 3 7 13 11
C2 = K+ —_K? LK 4+ — K?) g2
d*0) (1 + o) (1 — 0)? [(48 72 +16 >+<48 18 +16 )G

35 31 7B g 41
= _ Al 6_#_} AL
+<48 8 >6+486 K| Tivony, 12

The boundary condition, equation (2.3), is now completely specified. To solve equations (1)~(2.6).
for [8,];, it is further convenient to let

[0,];, = [0,]; +[0,]; (=1lor2) (13)

from which one can readily conclude that [ @,]; needs to satisfy the following partial differential
equation and the boundary conditions.

[1 - &+ Kln f] o[0,]; 9’[0,]; N 10[0,]; n 1 ’[@,]; (14)

L2¢()(1 —0)2 | oy ~  ae2 & & 41 -o0)PNE on?
[0,],~0  asy—x (15.1)
_a_[gwg]f =0 atf{=candé=1. (15.2)

The temperature solutions, [6,]; and [@,];, are now sought in the form:

(0.1, = 3. [B); ¥ exp [a2n] (16
m (j = 1or2)
[8:]; = ¥ (Gl R exp[—Fan] (17
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which satisfies respectively equation (2.1)’ and equation (15.1). In equation (16), o, and Y(&) are the
eigenvalues and the corresponding eigenfunctions of the following characteristic equation and the
boundary conditions.

2 2 _F2
d?y, 1dn+a4: o (1 ¢y+Km5]n:0 18)

d&@ TEdE T 40—’ NE T 20(0) (1 - o)
(:1?=0 até =cand &= 1. (19)
Similarly, 8, and R,(¢) in equation (17) represent the eigenconstants for the following characteristic
equation and the boundary conditions.
d*R, 1dR 5 B2 (1-&)+ KlIn¢
- - - R,=0 20
ag trae Th [4(1 —or Mg 2o | 20
ﬁ?zo até =gand ¢ = 1. (21)

It is noteworthy that the negative eigenvalues of the former set of characteristic equations, i.e.
equations (18) and (19), actually correspond to the positive eigenvalues of the latter set of
characteristic equations, equations (20) and (21), and vice versa. The two sets of characteristic
equations are, hence, intrinsically equivalent. The first twenty eigenvalues and the corresponding
eigenfunctions were determined, in this study, for annuli having o(= r,/r,) values of 0-1, 0-3, 05,
0-7 and 0-9 and for N, ranging from 1 to oc. For N, < 100, the eigenvalues show a tendency to
become progressively smaller as Np, decreases. The eigenvalues are, however, quite insensitive to the
variation of Np,, if Np, exceeds ~ 100. For reference, the computed eigenconstants are tabulated
in Table 1 for Np, = 1 and ¢ = 0-5. For a pair of fixed Np, and o, the eigenconstants applicable to

Table 1. Calculated eigenvalues and the related constants
6 =1/t =05 Np, =1

%, B [B.]; [C.]; [B.]. [C) (R, d¢
1 0-999310 2:45771 1-33723 —475116(2)* 2:68973 6952672 —3-17070(3)*
2 2:60096 3-48921 4-58435(2)* —1-30812(2) — 6385212 —1-86367(2) 690435(3)
3 361979 4:29095 1-16212(2) - 583076(3) 1-64379(2) 8-26988(3) —1-43243(4)
4 440267 496743 5-30962(3) -3-26591(3) —7-51051(3) —4-62423(3) 9-52163(4)
5 506580 5-56306 3-03117(3) —2-08096(3) 4-28766(3) 2:94565(3) —2-80348(5)
6 565172 6:10114 1:95805(3) —1-44055(3) —2-76799(3) —2:03732(3) 2-82183(4)
7 6-18242 6-59564 1-36785(3) —1-05523(3) 1-93389(3) 1-49292(3) —9-87856(6)
8 667108 705565 1-00968(3) —8:06559(4) —1-42624(3) -113979(3) 1-18508(4)
9 712634 7-48752 7-75420(4) —6-35905(4) 1-09559(3) 899402(4) —4-57786(6)
10 7-55424 7-89583 6-14608(4) —5-14785(4) —8:67198(4) —7-26735(4) 6-04050(5)
11 795918 8-28407 4-98747(4) —4-24634(4) 703975(4) 6-00431(4) —2-45171(6)
12 8:34451 8-65493 4-13318(4) —3-56990(4) —5-82077(4) —5-03133(4) 3-48369(5)
13 871282 901055 3-47715(4) —3-03523(4) 4-89937(4) 4-29116(4) —1-46014(6)
14 9-:06619 9-35267 2:97220(4) —262247(4) —4-17080(4) —3-68444(4) 2-18979(5)
15 9-40630 9-68272 2:56501(4) —2-27659(4) 3-60175(4) 3-22068(4) —9-47468(7)
16 973455 10-00190 2-24590(4) —2:01059(4) —3:12620(4) —2:80511(4) 1-48519(5)
17 10-05209 10:31121 1-97593(4) —1-76550(4) 2:75214(4) 2:51441(4) —9:22116(7)
18 10:35990 10-61151 1:77306(4) —1-57387(4) —2-40577(4) —2-15488(4) 1-01823(5)
19 10-65884 1090356 1-58699(4) —1-25311(4) 2:14973(4) 2:19246(4) —561137(7)
20 1094963 11-18799 1-60089(4) —295197(4) —1-67277(4) —3-10362(4) 7-28163(6)

* X(a) means X x 1074



1914 CHIA-JUNG HSU

equations (16) and (17) do not depend upon whether the step jump in heat flux occurs at the inner
or outer wall of an annulus. The series expansion coefficients, [B,]; and [C,];, however, are
contingent upon such boundary conditions. From equation (2.6), it is apparent that these coefficients
must be determined such that the following two equations are simultaneously satisfied.

0 o

Z [Cn]j Rn(é) - Zl [Bn]j Yn(é) = _[Hf]j,r]=0 (22)

n=1 =

S BICLR + ¥ 2 (B %O = —
n=1 n=1 1+a
Neither R, (&) nor Y,() constitutes a set of mutually orthogonal functions, as is clear from the form
of equations (18)«21). The eigenfunction expansion technique customarily employed for the
differential equations of the Sturm-Liouville system, therefore, cannot be utilized to evaluate the
series expansion coefficients. As was done in the previous study [2], therefore, two sets of ortho-
normal functions, ¥, and ¢,, were constructed by linearly combining R, or Y, such that,

[6,,6 + 6,1 (23)

k

b= Y AR, b= Y BLO.  k=L2.. (24

n=1

and having the properties,

. , o
0ifi #£ k {olf;;ek 29)

1
foindt = {1 ifi = k) #edE =1 Z g
Construction of such orthonormal sets of function is possible by virtue of the fact that each of the
eigenfunctions, R, or Y, (n = 1,2,3,...), constitutes a set of linearly independent vectors. The
orthonormalization can be performed step by step following the Gramm-Schmidt orthonormaliza-
tion procedure [3]. For example,
1

R2dER,

|
¥y = Ry&IJ4)), Yo =1 J(4,4,),etc,
[RyR; d¢R,

and in general,

1 1 1
[ R} d¢ [R,R, d¢ [RR,_;d¢ Ry
1 1 1
[R,R;d¢  [Rid¢ . [RyR,_dE  Ry(&)

1
[RR;dE [RR,dE .. . [RR_,d& RO

Y = (26)
\/(An . An— 1)

where 4, is the Gramm-determinant which can be obtained by replacing the elements in the last
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1
column of the above determinant, R(£), (i = 1,2,...), by [R;R,d&é(i = 1,2,...). In this study,

¥, and ¢, were constructed for k = 1-20. By the following linear transformations, R, and Y, can
be expressed conversely in terms of i, and ¢,

k k
Ro= Y pl@. Yo=Y a0 k=12... @)

The numerical coefficients, pt and g, can be obtained most conveniently by inverting the matrices
containing a* or b as their elements. Substitution of equation (27) into equations (22) and (23)
yields, for j = 1 or 2,

3 S rcln®— 3 5 (B0 = ~[0/14-0 (28)
> S LG BN + 3 3 (B0 =[50+ 52 29)

which now permit determination of the series expansion coefficients, inasmuch as ¥,(¢) and ¢,(¢)
are orthonormal sets of functions. Thus, multiplying equation (28) by ,,, and equation (29) by ¢,,,
and integrating from ¢ to 1, the following sets of equations result by virtue of the orthonormal
properties given by equation (25).

S IChH - 3 T (86| dbnde = = [10,]0- o (30)

4 1
Z Z [Ck]jﬂk p"jlﬁ ¢nds + Z [Bk]jak an = m[‘sua + 521’] ."d)mdé (m=12,..). (31)
n=1k=n 4

The infinite series appearing in the above two equations were truncated, in this study, at m = 20,
for which their solutions were found to converge satisfactorily. With m = 20, these two equations
provide forty simultaneous equations which can be solved for the forty unknowns, [C,]; ~ [C2,];
and [B,]; ~ [B,o]; Thus, letting

[c.1] 00t de ]
1

[, ~ 10, ) im0 620

[C.m]j

[Fl,=|[B.);| [Gl;=

4 1

[B,]; m(‘suﬂ + 52j)f ¢, d¢
4 1

_[Bm]jJ _m(‘sua + 52,'),‘ O de
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and
m 1
R ST -quw d = L g [ b de
0 p; i
m 1
0 L —qumdé R S PN
- m 1
[E]j= 1P1(¢ ¢, dE . ﬁikzlprf.[‘//kd’ldé 0‘%% ay%n‘]';l
0 o3q3 g3
m 1
1p1fl// Omds .. ﬁf.k};lpl'h//kcbmdé 0 0 A J

the system of simultaneous equations can be written, in matrix form, as:
[EJ[F];=1G), (G=1ord) (32)
for which the solution can be written
[F]; = [E~'1;[G1;. (33)

The system of forty simultaneous eﬂuatlons was solved by utilizing the Gauss elimination method
using a CDC 6600 computer. The [ E]; matrix was normalized row-wise and reduced to a triangular
form by transformations using pivotal condensations. The unknowns were then calculated by
back substitutions. Whenever the computed series coefficients were found to be insufficiently
accurate, a combination of the Gauss elimination method and an iteration scheme was used to
improve the computational accuracy. The coefficients, [ B,]; and [ C,];, thus obtained are tabulated
in Table 1 for Ny, = 1 and o = 0'5.
Summing up, the solutions to equations (1)-(2.6) have been obtained as follows:

(0.1, = 3. (B KD exp 2] (34

40 o 1 — , _é‘ X, ]
<1T0>"+¢(o)(1+a)(1—a)2[< )‘f -5+ S e

+Cl+ 3 [GL RO [—fin]  (9)

[0,], = i B ]2 Y.(§) exp [“ 'l] (36)

1 1 -K\,, & K&Whn¢ o
(01, = 1+cr ¢(a)(1+a)(1_a)2[< 2 )5 g tT 3 50 “K)lnf]

+C2+ 21 [C): RO exp[—pin] (37

[6,],
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where C1 and C2 are given respectively by equation (10) and equation (12). Availability of the
explicit temperature solutions now enables derivation of the expressions for local Nusselt numbers.
Of particular interest are those in the heated region (0 < z < o). Since the bulk fluid temperature,
in dimensionless form is given by:
0); =—————
L6, oty )(1

substitution of equation (35) into th1s equation, followed by integration, yields

4 1
0,= (1) (0 we) * g = L e s L
X j(l — & 4+ KIn¢)¢R, de. (39

Jé(l £+ KInd[6,];déG = lor2,i=1,2) (38)

The integral appearing in equation (39) can be simplified to some extent by making use of equation
(20). Thus, one eventually obtains

4 1 2 - 1
(6], = l—f‘a <'I + —N—f;) - mz [C.]1 Baexp [—ﬁﬁﬂ]IfRndé- (40)
n=1 a

The expression for the wall temperature, meanwhilé, can be found by letting ¢ = ¢ in equation (35)
and noting that R,(o) is arbitrarily chosen to be unity. The expression for [Nu], hence becomes

I L S S
KIT.1: - [L]} [0l — [6:]s

o 1-K o K =
={¢(0)(1+6)(1—a)2[( 2 )*’"‘“""?*7“2‘”]+CI+Z[C,]1

) 0 1 -1
x exp (—fan) + mz [C: B CXP(—ﬂgﬂ)f ¢R, dé} : (41)
n=1 [4

[Nu], =

By going through an analogous derivation, the following expression for [ Nu], can be obtaincd.

quh _ 1 - l: 1 (é — E) + C2
K[T]. - [ [6.):-1[6:]; @)1 +a)(l—0a)?\8 2

a0 2 X 1 -1
+ Z [C.)2 Ra1) exp(—Ban) + Ni{d =) Z [C.). B2 exp(-ﬁi"l)j ¢R, df] : 42)
n=1 n=1 [

It is worth remarking that, as Np, — 00, equations (41) and (42) each reduce to the expression for the
case of negligible axial conduction.

[Nu], =
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DISCUSSION AND CONCLUSIONS
One of the most crucial parts of this analysis, undoubtedly, is the matching of the temperatures
and longitudinal temperature gradients at z = 0. To ascertain that the series expansion coefficients,
[B,]);and [C,];, computed by constructmg the orthonormal functions and by solving the system of
simultaneous equations indeed satisfy the required matching conditions, they were substituted into

the left side of both equations (22) and (23). The results were checked with the right-hand side of
these equations and it was revealed that these two equations were both satisfied remarkedly well.
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FIG. 2. Local Nusselt numbers [ Nu], for ¢ = 0-01.

This proves the validity of the present solutions. By employing the computed eigenvalues and the
associated constants, the local Nusselt numbers, [ Nu], and [ Nu],, were calculated from equations
(41) and (42) for various Péclét numbers. The Nusselt curves thus obtained are shown in Figs. 2-7,
for annuli having ¢ values of 0-01, 0-1, 03, 0-5, 0-7 and 09. As pointed out previously, Np, = o0
corresponds to the limiting case of no axial conduction. It is worthwhile, therefore, to compare the
results for this particular case with those reported by Lundberg et al. [4], who analyzed the
corresponding problem on the assumption of negligible axial conduction. In [4], only the first few
eigenvalues and the related constants are reported for several values of o ; they were compared with
those obtained in this study for Np, = oo, and excellent agreement was obtained. The local Nusselt
numbers reported for ¢ = 0'1 and ¢ = 05 in [4] also agree very well with those obtained in this
analysis.
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From Figs. 2-7, it can be observed that, as N, is reduced to below 100, both [ Nu], and [ Nu],
tend to decrease at n = 0 and become more uniform throughout the thermal-entry region. The
Nusselt curves for various Péclét numbers, however, cross each other and reverse their orders of
magnitude before reaching the fully developed values. This tendency is exactly identical to that found
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FiG. 7. Local Nusselt numbers [ Nu], and [ Nu], for ¢ = 09.

in the previous study [2] for pipe and parallel-plate channel flows. It can also be noted that, for a
fixed value of o, [ Nu], is larger than the corresponding [ Nu], in general. The two kinds of Nusselt
numbers, nevertheless approach each other as ¢ — 1, which corresponds to the limiting case of
parallel plates. On the other hand, as o — 0, [ Nu], should reduce to those for the case of pipe flow.
The [ Nu], curves shown in Fig. 2 for ¢ = 0-01 clearly exhibit this trend by comparison with the
results obtained for pipe flow in the previous study [2].

Figures 8 and 9 illustrate respectively the variation of local fluid temperature profiles for the
cases of j = 1 and j = 2. These results, which are shown for ¢ = 0:5 and for Np, = 1 and N, = 50,
were obtained from equations (34)-(37). In the adiabatic region, the fluid temperature is seen to be
uniform at sufficiently large negative value of 5. For the case of Np, = 50, for which the effect of
axial conduction is relatively small, this uniformity is roughly maintained throughout the adiabatic
region. Even at n = 0, where the step jurrp in wall heat flux occurs, the fluid temperature is
approximately uniform except the region close to the heated wall. As soon as 1 becomes positive,
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the fluid temperature profile undergoes rather rapid change because of the imposed heat flux at the
wall, causing a comparatively abrupt decrease of local Nusselt numbers. That this is not the case
for Np, = 1is obvious. Because the heat conducted upstream into the adiabatic region is significant,
a certain radial temperature profile is already established before the fluid reaches the point n = 0.

0-30,

AN o=r/r,=05

L\ constant heat flux
\ at inner wall
Nee=1

OB x(a) ———-= A, =50
i (1)m=0 " ({1)n=-0-0
-\ \ (2)7=0005 (2)n=-005
-\ (3)=005 (3ty=-12
A \ (4m=0

0204

| o015

Scale changes

[ W S - ) L S |
02 o4 0-6 08 0
r=n
-h
F1G. 8. Local fluid temperatures for the case where step jump in heat flux occurs at the inner wall.

In fact, it can be seen that the fluid temperature at # = 0 deviates very significantly from uniformity,
causing the temperature profile at n = 0 to become nearly parabolic in shape. Such deviation
appears to be larger if the step jump in heat flux occurs at the inner wall. Because of this, the
temperature profile only changes slightly as the fluid flows through the heated region. This is the
main reason why the local Nusselt number remains fairly uniform throughout the thermal-entry
region if the Péclét number is small. In analyzing the effect of axial conduction in channel flow,
therefore, it is incorrect to assume a uniform temperature profile at n = 0. Instead, the fluid tempera-
ture should be taken to be uniform at n = — oo, as was done in this study.
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SOLUTIONS THEORIQUES CORRESPONDANT AU TRANSFERT THERMIQUE POUR
LES NOMBRES DE PECLET FAIBLES DANS LA REGION D’ENTREE POUR UN
ECOULEMENT LAMINAIRE A L'INTERIEUR D'UN ESPACE ANNULAIRE

Résumé-—On obtient les solutions exactes de température et les courbes théoriques de Nusselt, valables
pour les nombres de Péclét variant depuis un jusqu’a 'infini concernant le transfert de chaleur dans une
région d’entrée pour un écoulement laminaire a travers un espace annulaire, soumis a un échelon de flux
de chaleur 4 la paroi pour z = 0. Pour tenir compte de l'effet de conduction axiale qui est important pour
des nombres de Péclét faibles, la température du fluide a I’entrée est choisie uniforme pour z = — o et
les vingt premiéres constantes sont calculées séparément pour la région adiabatique (o < z < 0) et la
région chauffée (0 < z < ).

En construisant deux ensembles de fonctions orthonormées provenant des fonctions propres non
orthogonales, les coefficients des développements en série sont alors déterminés de fagon que les tempéra-
tures les gradients longitudinaux de température pour les deux régions coincident pour z = 0. Les solutions
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de température correspondant au cas limite Np, = o montre 'excellent accord avec celles publiées par
Lundberg et al. [4], qui analysérent le probléme de la région d’entrée en négligeant la conduction axiale.

THEORETISCHE LOSUNGEN FUR DEN WARMEUBERGANG BEI KLEINER
PECLET-ZAHL IM EINLAUFGEBIET LAMINAR DURCHSTROMTER
KONZENTRISCHER RINGRAUME

Zusammenfassung-- Fiir das thermische Einlaufgebiet bei laminarer Strémung durch einen konzentrischen
Ringkanal werden exakte Lésungen der Temperatur und des theoretischen Verlaufs der Nusseltzahlen
angegeben. Die Losungen gelten fiir Péclét-Zahlen von 1 bis co und unter der Bedingung einer
stufenformigen Anderung der Wirmestromdichte der Wand bei z = 0. Um den Einfluss der axialen
Wirmeleitung zu beriicksichtigen, der bei kleinen Péclét-Zahlen bedeutend ist, wurde die Eintritts-
temperatur des Fluids als konstant angenommen bei z = ~ co. Die ersten zwanzig Eigenwerte filr das
adiabate Gebiet (— o0 < z < 0) und das beheizte Gebiet (0 < z < o0) wurden getrennt berechnet. Durch
die Konstruktion zweier Scharen orthonormaler Funktionen aus den nichtorthogonalen Eigenfunktionen
wurden die Serienexpansionskoeffizienten so bestimmt, dass sowohl die Temperaturen als auch die
axialen Temperaturgradienten der beiden Gebiete bei z = 0 ibereinstimmten. Die Losungen fiir die
Temperatur bei der Grenzbedingung Pe = oo stimmen sehr gut iiberein mit denen von Lundberg et al.
(4), die das Problem des Einlaufes unter Vernachldssigung der axialen Leitung untersuchten.

TEOPETUYECKOE UCCJHEJOBAHUE TEILUIOOBMEHA B JIAMUHAPHOM
TEYEHUU B KOHIIEHTPUYECKUX 3A30PAX IIPU HUSHNX YUCIAX
MEKJE BO BXOJJHOM TEIIJIOBOM YYACTKE

AHHoTAnHA— /I BXOZHOTO TENJOBOIO YY4CTKA IIPU Teljloo0MeHe B JIAMUHAPHOM TeUYeHMH
uepes KOHUEHTPUYECKHIT 3a30D MOJyYeHE! TOYHBIC DELIEHUS JJIA TEMIEPATYPHl H pacieTHbIE
kpuBHe uncen HycceabTa, crpaBeiuBsle aas dncen Ilewse ot [ 10 oo, 1717 CKa4Ka TeNII0BOro
MOTOKA Ha cTeHKe mpu z = (. [lig ydera oceBolf TeNJIONPOBOAHOCTH, MMeWILell 3HAYeHHe
NP HUBKUX umMcaax [lewse, TeMIepaTypa MKUAKOCTH HA BXOJe CUUTAETCA TIOCTOSHHONR mpu
z = —oo. PaccumTaHsl mnepBhe ABAALATH COOCTBEHHBIX BHAYEHMH B OTUAENBHOCTH 1
agmabarnueckoit obmactn (— o < z < 0) u gus obmacru marpesa (0 < z < o). 3arem
IyTeM MOCTPOGHUA JBYX CHCTEeM OPTOTOHAJIBHBIX (QYHKIME W3 HEOPTOrOHANbHHIX COOCT-
BeHHHIX QYHKIMI ONpefeNfmnch KoIPOUIMEHTE PasMomeHHs, TAK YTO KaK TeMIepaTyph,
TaK M TPaJMEHTH TeMIepaTyp s ABYX ofmacreit corsyacosasuch upu z = 0. Peurenus
TeMIIePATYPHl, COOTBETCTBYIOILINE NIPEJeNbHOMY CIy4alw Ny, = o0 HPEKPACHO COrIACYIOTCA
¢ NAHHBIMH, OomyGiaukoBaHHBIMU JIymnoeprom, Mak-I'yenom n Peitnonmbacom (4), xoTopsre
NOJIYYMITN AHAJMTUYECKOE pelleHHe AIA BXORHON ofgact B mpeHeGperenny aKCHATbHOR
TEMIOTPOBOXHOCTRIO.



